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Abstract 

We discuss the accuracy of mass models for extrapolating to very asymmetric nuclei and the 

impact of such extrapolations on the predictions of isotopic observables in 

multifragmentation.  We obtain improved mass predictions by incorporating measured 

masses and extrapolating to unmeasured masses with a mass formula that includes surface 

symmetry and Coulomb terms. We find that using accurate masses has a significant impact 

on the predicted isotopic observables. 
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Masses are critically important parameters in statistical models. They define the baryon 

number, the minimum energies of each decay mode, and enter exponentially into the 

Boltzmann factors that dictate the relevant yields [1-3] or emission rates [4].  Most statistical 

models utilize measured masses for frequently emitted species such as neutron, hydrogen 

and helium isotopes [1-7]; however, mass formulae must be employed to predict unknown 

masses. These unknown masses typically have unusual magnitude of isospin asymmetries, 

and their masses can influence the yields of their stable counterparts more significantly than 

is often realized. Here, we explore the interplay between these mass assumptions and 

predicted isotopic distributions within the context of an equilibrium model for 

multifragmentation [2, 5-11]. Over the past two decades, there have been many different 

variations of the statistical multifragmentation models first described in details in ref. [6]. To 

avoid confusions, we label relevant versions of the SMM codes with the associated references 

to be discussed here;  the two SMM codes originated from Copenhagan are SMM85 [6] and 

SMM95 [2, 5]; ISMM [10,11] is the improved SMM code with empirical masses and level 

densities based on the microcanonical SMM85; ISMM_McGill which is used in the present 

work, is the canonical SMM code using the recursive relations developed by Das Gupta [8,9] 

and incorporates the improvements developed in ISMM. The isotope distributions produced 

by  ISMM_McGill are similar to those predicted by ISMM described in details in Ref. [10] and 

[11]. 

We begin by discussing some of the deficiencies of mass formulae that are used in 

statistical models and some remedies relevant to the description of very asymmetric nuclei. 

Many mass formulae owe their form to the semi-empirical or Liquid Drop Mass (LDM) 

parametrization introduced by Weizsacker [12-15]. Such formulae approximate the nuclear 

mass M(A,Z) by  

M(A,Z)=N⋅mn+Z⋅mp- BELDM(A,Z)/c2 

where 

BELDM(A,Z) = avA - asA2/3- acZ2/A1/3 + apA-1/2 - asym (N-Z)2/A                                        (1) 
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and mn (mp) are the neutron (proton) masses; N, Z and A are the neutron, proton and 

nucleon numbers; and av, as, ac,  and asym are the coefficients of volume, surface, Coulomb, 

and symmetry in the liquid drop model. The value of the pairing term ap is 0 for odd A, 

positive for even N and Z and negative for odd N and Z. The A-dependence of av, as, ac and 

asym follows from the A dependence of the geometry of a well bound spherical nucleus, but 

the A dependence of the pairing term does not. Other forms of the pairing terms can be 

found in the literature [13-16]. Many different values for the coefficients used in Eq. (1) have 

been reported; some typical values used in the SMM models of ref. [2] and [8] are given in 

Table I. Other SMM models used in the literature reported different parameter sets [17]. 

Statistical models typically utilize mass formulae such as Eq. (1) for many, if not all, of 

the heavier masses. Surprisingly, the mass formulae that are utilized are often not 

particularly accurate. For example, the upper panel (a) of Fig. 1 shows the differences ∆BE = 

BELDM(A,Z) -BEEXP(A,Z) between the total  binding energies BELDM(A,Z) employed by SMM95 

[2] and the empirical binding energies, BEEXP(A,Z), tabulated by Audi and Wapstra [18]  For 

the heavier masses, there are discrepancies, which attain values as large as 40 MeV.  Even for 

light charged particles, the calculated masses can be off by over 20 MeV. In terms of the 

binding energy per nucleon, these discrepancies for the heaviest masses are less than 150 keV 

and may appear small. However, it is the total binding energy and not the binding energy 

per nucleon, that enters into statistical models [2, 5, 8]. For temperatures of the order of 5 

MeV, typically assumed in these models [8, 19, 20], such discrepancies correspond to changes 

in the Boltzmann factor and in the production probabilities for these nuclei that are of the 

order of exp(∆BE/T) ≈ 400 - too large to be ignored  

Advances in experimental measurements have provided high quality isotopically 

resolved data for neutron-rich systems [21-23]. Multifragmentation calculations for such 

systems require values for unmeasured masses of nuclei with neutron numbers N and charge 

numbers Z that lie very far from the valley of stability. Mass formulae of the form in Eq. (1) 

assume the symmetry coefficient asym to be independent of nucleon number.  However, it 

appears that there should be a nucleon number dependence of the symmetry coefficient, 

reflecting the density dependence of the asymmetry term of the nuclear equation of state [1, 

24,25]. To incorporate this, both the asymmetry and the Coulomb terms in the mass formula 
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should be separated into bulk and surface contributions [1, 14, 24, 25]. These surface 

symmetry and Coulomb terms are required for very neutron-rich nuclear matter because the 

surfaces can accumulate a significant fraction of asymmetry [25,26].   

To incorporate these surface energy terms, we adopt for simplicity the parametrization of 

the improved LDM (ILDM) formula of ref. [14, 24]: 

  BEILDM (A,Z)= av[1-k((A-2Z)/A)²]A - as[1-k((A-2Z)/A)²]A2/3 - ac Z²/A1/3 + apA-1/2 + cdZ²/A,     

(2) 

Here, the extra Coulomb term cdZ²/A, neglected in most models, takes into account 

corrections to the Coulomb energy associated with the diffuseness of the nuclear surface. The 

symmetry terms in Eq. (2) can be regrouped in a form similar to Eq.(1). From this one can 

identify an effective total asymmetry coefficient asym′ of Eq. (2) that includes the contribution 

from the surface and is dependent on A  

asym′ = k (av - as A-1/3)                                                                                (3)  

The parameters of Eq. (2) listed in the fourth row in Table I  correspond to the best fit of the 

experimental data for A≥5  in the Audi-Wapstra table [17]. The fit includes 2920 experimental 

masses. Figure 1b shows the difference between the binding energies calculated with the best 

fit parameters of ILMD and the Audi-Wapstra table [17] . The disagreement is much reduced 

relative to the comparison in Fig. 1a; the remaining deviations arise mainly from shell effect 

corrections. 

To achieve the most accurate treatment of the masses, we employ the tabulated masses in 

Audi-Wapstra table [17] when they are known. However we still need to compute the 

unknown masses for some nuclei, most of which have extreme proton to neutron 

composition. We adopt for simplicity, a procedure in which we compute the average shift of 

the ILDM formula from the empirical values near the extremes of the BE(A,Z) vs Z 

relationship at fixed neutron number. This shift, ∆N, is then subtracted from the prediction of 

the ILDM formula: 

 BEextrap(A,Z) =BEILDM(A,Z) - ∆n,                                                               (4)  

where 
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 ∆n=(1/n)Σi (BEILDM(Ai,Zi) – BErecomm (Ai,Zi)) ,                                         (5) 

and n=3 is the number of points taken before the right or left end of the curve. For example, 
46Fe is the heaviest and 29F is the lightest isotone for N=20 listed in the Audi-Wapstra table 

[17]. To predict the binding energy for N=20 isotones heavier than 46Fe, we use the masses of 
44Cr, 45Mn and 46Fe and Eqs. 4 and 5.  Similarly, we compute ∆n  from the masses of 29F,  30Ne 

and 31Na  to predict the masses of N=20 isotones lighter than 29F.  

To check this extrapolation procedure, we performed a similar analysis in which we 

treated the masses of the lightest and heaviest nuclei with fixed neutron number N in the 

Audi-Wapstra table [17] as unknown. We then predict the masses of these isotones using Eqs. 

4 and 5. Using the previous example, this means we use shifts ∆n obtained from 43V, 44Cr, and 
45Mn to predict 46Fe, and ∆n obtained from 30Ne, 31Na and 32Mg to predict 29F.  In Figure 2 we 

show the differences between the calculated and the empirical masses for the extreme ends of 

the isotone distributions as solid points [27]. We contrast this with the open squares, which 

denote the corresponding differences between the empirical masses and those calculated 

from the ILDM without this correction. Since this extrapolation is applied only to unknown 

masses, from this comparison, we estimate that our final procedure including the corrections 

of Eqs. 4 and 5 provides masses with accuracies about 1-2 MeV for nuclei just outside the 

Audi-Wapstra table. These extrapolations become less accurate with decreasing Z.  

Now, we examine the sensitivity of the isotopic distributions predicted by the improved 

multifragmentation model, ISMM_McGill, to the masses used.  Major improvement includes 

the incorporation of empirical binding energies and level densities [10, 11] in the 

multifragmentation stage. We compare predictions obtained by using the “standard” LDM 

mass formula (Eq. 1 with parameters listed in the first row of Table 1) to predictions using 

empirical masses supplemented by the ILDM mass formula described above.   

Following Ref.  [28], we perform calculations for two systems with source charge of Z0 

=75 and masses of A0=168 (N0/Z0=1.24) and A0=186 (N0/Z0=1.48). These two sources 

correspond to estimates of the prefragments remaining after pre-equilibrium emission in 

central 112Sn+112Sn and 124Sn+124Sn collisions, respectively, at an incident energy of E/A=50 

MeV. We assume a break up density of ρ0/6 where ρ0=0.16 fm-3 and a temperature of 4.7 
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MeV. This latter value  corresponds to the average “temperature” of fragments produced in 

the corresponding microcanonical ISMM models, at a total prefragment excitation energy of 5 

MeV per nucleon [10].  

The open data points in the left panels of Fig. 3 show the primary oxygen isotope 

distributions (before secondary decay) when the standard LDM masses are used for sources 

of A0=186 (upper panel) and A0=168 (lower panel).  The predicted distributions are 

approximately Gaussian.  Using the combination of empirical and extrapolated ILDM masses 

yields the primary distributions given by solid points in the left panels of Fig. 3. These latter 

distributions are much wider and display a notably higher production of the neutron-rich 

isotopes in the tails of the isotope distribution. This feature occurs for both the larger and 

more neutron-rich source (upper panel) and the smaller and more neutron-deficient source 

(lower panel). Similar widening of the isotopic distributions also occurs for the other 

elements. Thus the standard LDM masses used in most SMM calculations provide primary 

distributions that are much narrower and more neutron-deficient than those calculated when 

more realistic masses are used. 

Since the experimental isotopic distributions reflect the particle decay of excited particle 

unstable fragments, one should examine the isotope distributions after the sequential decays. 

There are many models that simulate the effects of sequential decays. In this work, we choose 

two sequential decays for comparison. The most sophisticated sequential decay algorithm 

included in ISMM [10] uses the empirical and the ILDM masses with empirical level 

densities. This decay code has been developed at the Michigan State University over the 

years [29,10] and is called the MSU_DECAY [10]. The solid points in the right panels of Fig. 3 

denote the final oxygen isotopic distributions obtained from ISMM_McGill with 

MSU_DECAY calculation. In this calculation (Calc I), both the multifragmentation 

calculations and the secondary decays calculations use the empirical and the ILDM masses 

and empirical level densities self-consistently. The dashed lines in the right panels 

(calculation II)  indicate the final oxygen isotopic distributions obtained from ISMM_McGill 

calculation with LDM masses (open points in left panels) with MSU_DECAY.  Thus 

calculation II is not self-consistent; different masses are used to calculate the primary (LDM 

masses) and secondary decay calculations (empirical and ILDM masses).  Even though the 
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primary distributions of Calc I and Calc II are very different, the final distributions after the 

sequential decays are quite similar.  Nevertheless, differences of the order of a factor of two 

are observed between calc. I (solid points) and calc. II (dashed lines).  

The secondary decay prescriptions used in most SMM [2, 7] codes adopt the evaporation 

and fermi break-up [30] as the decay process. We call this decay code the SMM_DECAY. The 

masses used in such calculations include both empirical and calculated masses. Empirical 

masses are used for most light nuclei with A<20 and parametrization of the masses for all the 

others.  The open points (calculation III) correspond to the final distributions when this 

sequential decay algorithm is applied to the primary calculations obtained using LDM 

masses for A>4. The difference between Calc. I (solid points) and Calc. III (open points) is 

large. The predictions from Calc. III should be similar to results obtained from prior SMM 

calculations such as the version used in ref. [20]. Thus, the different mass assumptions as well 

as the sequential decays could be an important factor in explaining why fragment 

distributions that use codes similar to SMM95 are much narrower and under-predict the 

production of neutron-rich nuclei. 

Recent studies suggest that detailed comparison between reactions at the same 

temperature or excitation energy, but at different proton to neutron composition, can be 

made using the isoscaling relationship [22,31,32] 

 Y2(N,Z)/Y1(N,Z) = Cexp(αN+βZ),                                                                              (6)  

where C, α, and β, are fitting parameters. The subscripts 1 and 2 refer to the two sources with 

different isospin composition, with source 2 normally referring to the more neutron-rich 

source. In the present work, 1 and 2 denote sources with  nucleon and charge numbers, (Ao, 

Zo) corresponding to (168, 75) and (186, 75), respectively. Primary fragments produced in 

grand canonical, canonical and microcanonical statistic multifragmentation models generally 

obey isoscaling [28]. The extracted isoscaling parameters depend strongly on the isospin 

asymmetry of the source, but they may also depend on the isospin dependence of the masses 

used. Indeed, different isoscaling fitting parameter sets, C, α, and β, are extracted depending 

upon whether the masses are obtained from the LDM or from the empirical values plus the 

shell corrected ILDM calculations.  These isoscaling parameters are listed in columns 3-5 of 

Table II. The absolute values of the relevant α and β parameters, resulting from fitting the 
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calculations that use the LDM masses are higher than those that use the empirical plus ILDM 

masses. 

Depending on which masses and the decay mechanisms are employed in the sequential 

feeding algorithm, different isotope distributions will result. Figure 4 shows the isotope ratios 

and isoscaling fits for Calc I, II and III.  The open and closed points are the predicted isotope 

ratios as a function of N for odd (Z=3, 5, 7) and even (Z=4, 6, 8) charge elements respectively. 

The solid and dashed lines correspond to the best fit lines. The isoscaling fits (lines) from calc. 

III shown in the rightmost panel of Figure 3 vary nonstatistically with respect to the 

predictions (symbols); indicating that isoscaling is not well obeyed by the schematic 

secondary decay approach of ref. [28]. In comparison, better fits are obtained for Calc I (left 

panel) and Calc II (middle panel), for which the sequential decays are calculated using the 

empirical ILDM masses and empirical level densities. Due to the similarity in the final 

distributions of Calc I and II, the α values obtained are similar even though the α values from 

the primary fragment distributions are quite different. However, there are significant 

differences in the final value for α and β between the fully empirically based Calc. I and Calc. 

III,  indicating that precise treatments of the mass values and sequential decays should be 

implemented within equilibrium statistical multifragmentation models before they can be 

used with confidence to describe isoscaling observables.  

It is interesting to note that corrections to α from secondary decay in Calc. I where 

consistent values for the masses are used in the primary and secondary decay calculations are 

smaller than for Calc. II where mass values for primary and secondary decay stages are 

different. The situation is less clear for β, which is affected by  Coulomb interactions in the 

freezeout configuration that influence the primary yields but do not enter into the calculation 

of the secondary decays. Large differences have been observed between isoscaling 

parameters extracted from primary fragments produced by the dynamical Stochastic Mean 

Field (SMF) model and the corresponding parameters after decay [23]. It would be interesting 

to know whether such differences may be caused in part by discrepancies between the SMF 

masses and the ones used in secondary decay as was observed in the case of Calc. II above. 

In summary, recent experimental advances in measuring isotope distributions and the 

improvement of multifragmentation models suggest that accurate fragment masses should 
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be incorporated into these models to provide accurate comparison between data and 

theoretical predictions. The effect of inaccuracies in the mass parametrization upon isotopic 

observables should not be limited to the SMM approach, but should apply to all statistical 

and dynamical models of fragment production.   

This work is supported by the National Science Foundation under Grant Nos. PHY-01-

10253, PHY-00-70818, PHY- 00-70161, INT-9908727 and by the contract No. 41.96.0886.00 of 
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Tables: 

Table I : List of parameters used in the simple LDM (Eq. 1) and the ILDM (Eq. 2). 

Parameter 

/Model 

av as ac asym Cd avk ask ap 

LDM [2] 16.0 18.0 0.72 23.0 n/a n/a n/a 0 

LDM [8] 15.8 18.0 0.72 23.5 n/a n/a n/a  

ILDM 15.6658 18.9952 0.72053 n/a 1.74859 27.7976 33.7053 10.857 

 

Table II : Best fit isoscaling parameters. The calculations of  the primary and secondary 

distributions are labeled by the mass formulae that are used.  

Calc. Primary C (before) α (before) β(before) Decay C(after) α (after) β((after) 
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I  ILDM 1.1349 0.4847 -0.6511 ILDM 0.8501 0.459 -0.481 

II  LDM 1.1477 0.6233 -0.8478 ILDM 0.9175 0.433 -0.501 

III  LDM 1.1477 0.6233 -0.8478 LDM-

like 

0.4754 0.592 -0.572 

 

Figures Captions: 

Figure 1: Deviation of calculated binding energies from empirical binding energies [17]. 

The calculated masses are obtained using (a) Eq 1 with parameters of ref [2]  (see Table 1) and 

(b) Eq. 2 with the best fit values listed in Table I labeled ILMD. 

Figure 2: Deviation of calculated binding energies from empirical values [17] at the 

extremes of the BE(N,Z) vs. Z curve. The open squares correspond to the calculated mass 

using Eq. 2 whereas the full circles represent results obtained with the extrapolated 

procedures of Eq. 4 and 5 as discussed in the text. 

Figure 3: Oxygen isotope yields from the improved ISMM_McGill code using LDM 

parameters of Ref. [2] (open circles) and empirical masses supplemented by ILDM masses 

(closed circles). The top and bottom panels correspond to different sources (A=186, Z=75) 

and (A=168, Z=75) respectively. Primary yields are plotted on the left panels and the yields 

after sequential decays are plotted in the right panels. See text for details. 

Figure 4: Isoscaling for isotopes with Z=3-8 obtained from the Calc. I, II and III listed in 

Table II and described in the text. The open and closed circles are predicted ratios and the 

dashed and solid lines are best fits using Eq. 6. 
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